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Abstract

Previous quantitative models of security or survivability have been de-

fined on a range of probable intruder behavior. This measures survivability

as a statistic such as mean time to breach. This kind of purely stochas-

tic quantification is not suitable for high-consequence systems. For high-

consequence systems the quantified survivability should be based on the

most competent intruders the system is likely to face. We show how to ac-

complish this with a contingency analysis based on variations in intruder

attack-potential. The quantitative results are then organized and presented

according to intruder attack potential. Examples of the technique are pre-

sented using stochastic process algebra. An interesting result for diverse

replication is included in the examples.

1 Introduction

Recently, intrusion-tolerance has been seen as a potential approach to increasing
the survivability of an information system. An important part of this approach
has been to quantitatively model intrusion-tolerance or survivability. The trend
in these models has been to move away from characterizing security or surviv-
ability as simply a small collection of statistics, such as mean time to security
breach or mean effort to security breach. More recent approaches have included
detailed models of intruder behavior including relatively complex interaction
between the intruder and the system under attack. However, the end result is
still presented as one or more purely stochastic properties of the system being
modeled.
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This approach and the fundamental concept of a purely stochastic model
of security or survivability can be problematic for systems that manage high-
value resources or support critical missions. Most security breaches in low- or
moderate-consequence systems are due to the presence of known and corrected
but unpatched vulnerabilities or to unintentional misconfiguration. For these
kinds of systems, a statistic such as mean effort to breach, defined on a range of
probable intruder behavior, is more descriptive than a Common Criteria eval-
uation rating. However, high-consequence systems are subjected to sufficient
engineering and operational management to practically rule out unpatched vul-
nerabilities or misconfigurations. Security breaches in these systems result from
human ingenuity. A subtle design flaw is exploited or a previously undiscovered
implementation flaw is located by the intruder’s engineering efforts. The faults
leading to these breaches are not stochastic.

In systems that manage high-value resources or support critical missions, we
are not interested in quantifying over a wide range of intruder ability. Instead,
we want to quantify protection of those resources and missions in the presence
of the most competent intruders the system is likely to face.

Realistic quantitative models for high-consequence systems need to reflect
detailed non-stochastic intruder behavior. Quantitative survivability (and secu-
rity) should be modeled and measured with respect to the behavior of specific
reasonably competent intruders.

This paper presents quantitative survivability modeling for high-consequence
systems in three steps. First we draw a distinction between stochastic fault
models and fault models for human-sponsored faults. Then we explain how to
characterize human-sponsored faults in terms of attack potential and show why
hard intruders are applicable to high-consequence systems. Finally, we con-
struct some example attack-potential-based survivability models. These models
present an interesting result concerning diverse replication for intrusion toler-
ance. Readers who are familiar with basic survivability definitions and stochastic
process algebra may prefer to skip the rest of this introduction.

1.1 Related Work

Early work in quantitative modeling of security was done by Littlewood et al.
[14] identifying intruder work factor as a fundamental quantitative measure of
security. Jonsson and Olovsson [10] constructed a quantitative intruder model
using real data. As we discuss in this paper, their model was not for a high-
consequence system. Ortalo, Deswarte, and Kaâniche modeled operational se-
curity in a real system [15]. Their work also was not for a high-consequence
system but does provide a concrete example of the kind of quantitative mod-
eling we advocate for high-consequence systems. Their model has two distinct
intruders: a stateful and a stateless intruder. In planning future attacks in a
network, a stateless intruder only considers attacks that are possible from the
host it has just compromised. A stateful intruder considers attacks from hosts it
has previously compromised. Their quantitative results are presented for both
kinds of intruders. Neither of the two intruders represents a hard intruder.



Singh, Cukier, and Sanders [21]; and Stevens et al.[23] quantitatively model
architectures that could be candidates for high-consequence systems. They also
present the use of quantitative models for validation and design studies during
system construction rather than operational assessment of an existing system.
The models they present are not attack-potential-based but could be adapted
to attack-potential-based modeling.

The stochastic process algebra we use was created by Hillston [9]. As far as
we know, our work is the first use of SPA to model survivability.

1.2 Definitions and Concepts

We begin with a definition of high-consequence system. A high-consequence
system includes resources or missions that could cause serious harm to human
beings, if there is a failure. Serious harm includes not only physical injury
but other kinds of harm including loss of political freedom or financial well-
being. Examples of high-consequence systems include not only national security
systems but also medical and real-time control systems. Finally, any large-
scale information system that supports large numbers of human beings (e.g.
systems that support elections) is also high-consequence because of the difficulty
of making good after a failure.

Given that definition, we lay out some general dependability concepts from
Aviẑienis, Laprie, and Randell [2, 13] which we quote:

• Dependability of a computing system is the ability to deliver service that
can justifiably be trusted.

• Failure is an event that occurs when the delivered service deviates from
correct service.

• An error is that part of the system state that may cause a subsequent
failure.

• A fault is the adjudged or hypothesized cause of an error.

It is important to point out that we do not use the definition of security given
in the preceding references. The distinction we draw is that security is depend-
ability in the face of human-sponsored attacks. We use the term security breach
as a synonym for failure.

Powell, Stroud, et al.[17] provide an insightful interpretation of general de-
pendability concepts for security. We follow their definition, bearing in mind
our qualification of human sponsorship:

• An attack is a malicious interaction fault aiming to intentionally violate
one or more security properties; an intrusion attempt via a vulnerability.

• A vulnerability is an accidental fault or non-malicious intentional 1 fault, in

1Non-malicious intentional faults are misconfigurations introduced for reasons such as per-

formance or usability.



the requirements, specification, design, implementation, or configuration
of the system or its use, that could be exploited to create an intrusion.

• An intrusion is a malicious, externally-induced fault resulting from a suc-
cessful attack.

We notice that an intrusion always causes a security breach while an attack or
a vulnerability only has the potential to cause a security breach. We do not
attribute human sponsorship to vulnerabilities. A maliciously introduced fault
(i.e. flaw) in requirements, specification, design, implementation, or configura-
tion is really an attack.

Following conventional security practice, we qualify attack, vulnerability, or
intrusion with a general security property that may be violated: e.g. confiden-
tiality, integrity, or availability. For example, we may have a confidentiality
attack or an availability intrusion.

1.3 Stochastic Process Algebra

This paper presents some example survivability models based on stochastic pro-
cess algebra (SPA). PEPA (Performance Evaluation Process Algebra) [8, 5, 6]
is a stochastic process algebra that has been successfully applied to a range
of problems. Stochastic process algebras add a performance or quantitative
element to the behavior modeling of process algebras.

Activity prefix is the most fundamental PEPA construct. Prefixing allows us
to prefix activities to a process to describe its behavior. So the process described
as (α, rα).(β, rβ).P engages in activity α, then does activity β, and finally acts
like process P . Each activity (α, rα) has a duration that is exponentially dis-
tributed with mean 1/rα. An activity rate can be any positive real number
or the special value > that indicates a don’t care rate, i.e. > is so fast that
other activities always determine the rate. Choice between processes represents
choices of behavior. Choice between processes P and Q is denoted (P + Q);
the combined process will either act like process P or process Q. If process P
is chosen this reflects the fact that the activities of process P completed before
process Q.

The rate of an activity can be used to simulate probabilistic choice. For
example, suppose we want to simulate a probabilistic choice between processes
P1 and P2. We define an activity (α, r) and prefix it to both alternatives, with
a modified rate p(Q) · r that reflects the probability p(Q) that we wish to assign
to each alternative Q. Setting p(P1) = 1/3 and p(P2) = 2/3 as the probabilities
we get

(α, r/3).P1 + (α, 2r/3).P2 (1)

that acts like process P1 one-third of the time and acts like process P2 two-thirds
of the time. We use this technique to model intruder and defender choices.

Since modeling interaction between processes is the key motivation for pro-

cess algebra, PEPA has a cooperation operator ./ for interprocess communi-



cation. A cooperating process (P ./
L

Q) synchronizes on the activities in the

cooperation set L. The activities in the cooperation set will occur together in
processes P and Q, with the duration of the slower activity.

A PEPA process algebra model has a corresponding Markov process. This
Markov process can be solved to obtain the steady-state distribution of the
states of the Markov model. When we describe a PEPA model as being in a
certain state, we mean that the corresponding Markov process is in that state.

2 Fault Models

A stochastic fault is a fault whose occurrence or non-occurrence is predicted
by one or more random variables. It is not possible to show the occurrence or
non-occurrence of a stochastic fault by a logical argument based on the design
of the component. That is, we cannot apply fault prevention. What we can do
with a stochastic fault is apply the laws of mathematical probability to predict
its likelihood. It is possible to show, using a logical argument, the consequence
of a stochastic fault given its occurrence, if the type of fault, the design, and
the state of the faulty component are known. Stochastic faults can occur when
no human intruder is present; in fact this is the usual paradigm.

Stochastic faults can also be used to accurately model the behavior of naive
attackers that do not understand the design of the defensive mechanisms [10].
Stochastic faults are useful for modeling the behavior of a range of probable
intruders operating against a low- to moderate-consequence system. Stochastic
faults are also accurate for modeling physical damage to information systems
though not necessarily all forms of physical attack. Multiple stochastic faults
are usually statistically independent. If there are dependencies between faults
then the dependencies can be described by threshold assumptions.

Jonsson and Olovsson constructed a stochastic model of the security intru-
sion process [10]. This model characterizes intruders in terms of their stationary
mean time to breach (MTTB). As we will discuss in detail in Section 3, their
model is very accurate for the low-consequence system they investigate, because
they carefully define the knowledge, access, and capabilities of the intruders they
model. This is critical. However, the system-relevant attack behavior of the in-
truder is not reflected in the model. All system-relevant behavior is abstracted
into phases of intruder skill. That is, their model does not relate its statistic to
the security architecture and protocols under attack. Also, their model gives no
definition of security per se. That is, there is no clarification of what security
policy or claim is being violated by an intrusion. The resulting intruder is purely
stochastic.

Thus MTTB quantification does not tell us if our system is safe from denial
of service, information leaks, or something else. A purely stochastic fault model
does not represent details of the intrusion itself and so tells us little about the
merits and demerits of specific design choices. As Singh, Cukier, and Sanders
state [21]



We believe that probabilistic models for intrusion-tolerant sys-
tems should, either explicitly or logically, include sub-models of the
attacker, the intrusion-tolerance mechanism being used, the appli-
cation, and the resource/privilege state of the system.

This brings us to the idea of a sponsored fault. A sponsored fault is caused by a
human intruder using design to exploit vulnerabilities in a system. If the initial
conditions and the design of a component are known then the occurrence or non-
occurrence of a particular sponsored fault can be shown by logical argument.
Sponsored faults frequently comprise a set of vulnerabilities organized according
a design [20, 16, 22, 25].

3 Characterizing Sponsored Faults

The literature regarding stochastic faults has well-understood ways of charac-
terizing these faults [3]. Stochastic faults are described in terms of the kinds of
failures they cause and the frequency at which they occur, e.g. no more than t
simultaneous faults during the life of the system. In contrast to this, sponsored
faults are best described in terms of the intruders that sponsor them.

Schudel and Wood [20] analyzed the qualitative use of a work factor as a
means of characterizing sponsored faults. Intruder work factor (e.g. mean time
to accomplish an attack) is part of a good metric for survivability or security.
However, intruder work factor is determined by the attack potential of an in-
truder. A work factor metric should be coupled with a description of intruder
attack potential that determines it. Intruders are best characterized by directly
defining their attack potential. Work factor or MTTB can then be determined
by modeling or experiment against the system of interest.

3.1 Attack Potential

Attack potential is an intruder’s potential for succeeding in a specific kind of
penetration attempt or attack. Attack potential is based on the intruder’s initial
access, initial knowledge and capabilities. Jonsson and Olovsson very carefully
measured, documented, and reported all of these attributes in their stochastic
modeling of security. Their description was also closely tied to the specific
system under attack. Many subsequent quantitative studies have not done this
as carefully. Because of this, their results are difficult to apply to sponsored
faults because they are based on a poorly defined notion of attack potential. In
other cases, results have been defined in terms of outcomes or symptoms to be
avoided, as in denial of service, or loss of confidentiality, assuming a stochastic
intruder. The limitation of outcome- or symptom-based results is that, given a
suitably naive or weak intruder, any solution may avoid the symptom.

Finally, even some of the best work only aims to stop probable intruders
rather than hard intruders. Probable intruders are the most frequently seen
but not the hardest to defeat. Hard intruders are in the far right side of the
attack potential distribution; they are fully competent in the kind of attack
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Figure 1: Distribution of Intruder Attack Potential

under consideration. Figure 1 shows the distinction between hard and probable
intruder attack potential. Figure 1 also shows the only probabilistic aspect of
sponsored faults: the distribution of intruder attack potential. All other aspects
are matters of either capability, initial access, or initial knowledge. Schneider
and Zhou state[19]

Fault-tolerance and attack-tolerance are ultimately tied to a set
of assumptions about the environment in which a system must func-
tion. Weaker assumptions should be preferred, since then there is
less risk that they will be violated by natural events or an adversary’s
attacks.

This identifies the fundamental value of the hard intruder for high-consequence
systems. A weak or probable intruder represents a strong assumption about the
environment; the harder the intruder, the less we assume about the environment.

The cryptographic protocol research community has accepted the wisdom
of a well-defined hard intruder in any research that seeks to deal with human
adversaries. They consistently use well-defined intruders (e.g. the Dolev-Yao
model[4]) in their work. A well-defined intruder has a clearly specified set of
capabilities, initial access, and initial knowledge. This in turn clarifies the ef-
fectiveness and applicability of the results.

The interest in defining and using hard intruders arises out of both mathe-
matical considerations and practical needs. First, comparison and measurement
require some kind of upper bounds. It is especially important to know if a pro-
posed solution will not handle hard intruders. Second, since intruders are human
they not only learn but also share knowledge. Thus the hard but unlikely in-
truder of today becomes the norm or most probable intruder of tomorrow. In
other words, the distribution of intruder attack potential shown in Figure 1
moves to the right over time, as shown in Figure 2.

3.2 A Hard Intruder for the Server Denial of Service Prob-
lem

At this point an example will help to clarify what we mean by hard intruder. Let
us consider a hard intruder for a familiar problem: server survivability, where
the goal is to provide some degree of resistance to denial of service [16, 23, 21].



t1 t2 t 3

¡¡ EE @@

attack potential

probable

intruders

Figure 2: Attack Potential Increasing Over Time

For this problem, a hard intruder might be described as one with the following
initial access

• Root (i.e full administrative) access to the host of at least one authorized
client of the server;

the following initial knowledge

• Complete knowledge of the implementation (source code, compiler op-
tions, etc.) and documentation for the client;

• Complete knowledge of the implementation (source code, compiler op-
tions, etc.) and documentation for the server, for each different kind of
server used in a diverse replication approach;

• complete knowledge of the implementation of any survivability mecha-
nisms including those used for recovery or reconfiguration;

• complete knowledge of the implementation of any intrusion detection sys-
tems in use;

• sound statistical knowledge of current configuration data, including intru-
sion detection rule bases;

and the following capabilities

• full application of the best available software engineering technology, in-
cluding security vulnerability analysis and formal methods;

• detection avoidance via use of a representative copy of the system to be
attacked, for learning, planning, and rehearsal (i.e. none of these activities
are conducted on the target system) [20];

• use of a strategy of persistence: when a vulnerability is found that can
compromise a server, this vulnerability will be used repeatedly, on the
same replica, until a new version of the software without the flaw is in-
stalled or the server is permanently disconnected from its network;

• use of a strategy of conservation of vulnerabilities: if replicated diversity
is used in the defense then the intruder will postpone any attack until a
vulnerability is available for each kind of replica; that is, attacks will use
replicated diversity as well.



This particular intruder definition includes reasonable attack potential that can
critically impact the expected survivability of a system. That is, each capability,
known fact, or access cannot be shown to be either computationally infeasible,
humanly unlikely, or prohibitively expensive for the intruder. This particular
intruder is arguably more justifiable than the Dolev-Yao intruder but still poses
significant challenges to current survivability mechanisms. The capabilities we
have discussed here do not include all of the denial-of-service-relevant capabili-
ties that could be justified [22, 11, 25, 18, 12, 24].

Apparently simple changes in intruder initial access, initial knowledge, or
capabilities can have significant impact on the claimed effectiveness of a solution.
For example, as the models in our next section will show, if we remove the
strategy (i.e. capability) of vulnerability conservation from our intruder then
server survivability increases significantly. But there is no reason to claim that
a competent intruder would not conserve flaws and use a diverse attack. So it
is important to know precisely what kind of intruder is being supposed, that is,
the intruder’s specific attack potential.

3.3 Attack-Potential-Based Modeling With Hard Intrud-
ers

Our response to the significance of specific attack potential is to present quan-
titative results for different kinds of intruders. This is a kind of contingency
analysis (as opposed to sensitivity analysis); we vary our assumptions about the
intruder to investigate the significance of each assumption. The critical point,
from the perspective of the designer or evaluator of a survivable system, is to
make this contingency analysis a part of the quantitative results. A designer or
an evaluator can then understand how closely the quantitative results apply to
a proposed system and its environment.

We must be careful to conduct and present our contingency analysis in terms
of hard intruder attack potential. To do this, we must vary the structure of
the models to reflect 1) details of both the system artifacts that participate
in an attack and 2) details of the intruder’s attack potential. Otherwise, it is
possible to merely vary the rate at which the intruder succeeds. This would
bring us back to a purely stochastic fault model that gives little insight into
the merits and demerits of specific design choices. Useful quantitative results
should be presented as a description and justification of each specific intruder,
a description of each model variant, and quantitative results for each intruder.

4 Modeling Survivability Using Different Intrud-

ers

Now we present a series of models that provide an example of attack-potential-
based quantitative modeling of survivability for high-consequence systems. Our
examples also demonstrate the significance of getting the intruder model right.
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Figure 3: Activities of the Sponsored Fault Model

Our examples model survivability in the presence of denial of service attacks
against a server. Each model measures the fraction of a mission that is supported
by the server. We assume the mission has a short duration, say 100 hours, and
that no changes can be made to the executable software during the mission.
Our models show how long the server is up and working during the mission,
that is, its availability in the presence of sponsored faults, which approximates
survivability.

There are four attack-potential-based models: 1) a naive intruder attacking
a single server, 2) an intruder with the capability of persistence, attacking a
single server, 3) the same intruder attacking a diversely replicated server, and
4) a flaw-conserving intruder that makes diversely replicated attacks against a
diversely replicated server.

Our examples reflect increasing levels of attack potential. The basic abstrac-
tion of the server and its interaction with the attacker is shown in Figure 3. This
model is a simplification of the state model of Goseva-Popstojanova et al. [7].
Normal operation is indicated as Server. An attack event puts the server in a
Triage condition where it automatically tries to identify and handle the attack.
A stop event represents failure of the intruder’s attack; the model stays in the
Server condition. While in a triage condition the server may either recover, fail,
or go into an Alarm condition. In an alarm condition the user is either able to
manually recover the server or it fails. All failure events result in a hard failure
for the server; it is in a Fail condition. The possibility of recovery still exists
but it is much lower than from the alarm or triage conditions.



Intruder
def
= (searching, h).Attack;

Attack
def
= (start attack, k).(attack, a).Attack + (start attack, el).Intruder;

Server
def
= (attack,>).T riage;

Triage
def
= (start triage, rt).(recover, r1).Server + (start triage, at).(alarm, b).Alarm+

(start triage, ft).Fail;

Alarm
def
= (start alarm, ra).(recover, r2).Server + (start alarm, fa).Fail;

Fail
def
= (start fail, rf).(recover, r3).Server + (start fail, ff).(fail, f).Fail;

Intruder
./

{attack}
Server

Figure 4: PEPA Model of a Single Server and Naive Attacker

4.1 Attack on a Single Server

The first process algebra model represents a naive attacker trying to shut down
a single server. It is shown as Figure 4 below. The attacker is modeled by the
PEPA process Intruder ; process Server models the single server that is under
attack. The process shown as Equation 2 below, uses the PEPA cooperation

operator
./

{attack}
to represent the interaction of the intruder and the server via

synchronized participation in the event attack.

Intruder
./

{attack}
Server (2)

This model has 27 states, where a state combines the current process of both
the intruder and the server. The applicable activity rates for this model are
shown in Table 1.

The results for the naive attacker against a single server are that the server
is down for less that 6% of the mission. About a third of this 6% is spent in the
process

(attack, a).Attack
./

{attack}
(fail, f).Fail

the rest is in one of the processes that represents recovery from failure. This is
reasonable given the short mission, the intruder’s lack of persistence, and the
given likelihood of finding security flaws. It serves as a reasonableness check on
the basic structure and rates of our models.

If we now assume a more sophisticated intruder who adopts a strategy of
persistence then the survivability of the same server does not look as good. A



Rate Value Meaning
k 0.6000 Intruder persistence.
el 0.4000 Intruder’s rate of giving up or fumbling the attack.
rt 0.2500 Likelihood of automatically recovering from triage.
ra 0.9000 Likelihood of manually recovering from alarm.
rf 0.9000 Likelihood of manually recovering after hard failure.
at 0.7000 Likelihood triage can’t stop attack and goes to alarm.
fa 0.1000 Likelihood of being unable to recover after an alarm.
ft 0.0500 Likelihood of hard failure from triage.
ff 0.1000 Likelihood of remaining hard failed.
a 100.0 Duration of an attack.
h 0.00017 Rate at which the intruder discovers flaws.
m 0.99983 1− h
r1 0.1428 The duration of an automatic recovery.
r2 0.2856 The duration of a manual recovery from alarm.
r3 0.001428 The duration of a manual recovery from hard failure.
b 1.000 The duration of an alarm.
f 0.0001 The duration of a failure

Table 1: Transition Rates for Naive Attacker

persistent attacker will exploit the fact that no software fix is available and
repeat any successful attack, for the duration of the mission. This repetition is
not a repeat of the same kind of attack against another server, but repeatedly
attacking the same server, as it is in the process of trying to cope with a previous
attack. We model this by changing the rates k and el to k = 0.999 and el =
0.001. Notice that this is not a purely stochastic change in the previous model.
The work factor, expressed as the rate h, has not changed.

So our new model has the same PEPA stochastic process algebra as before,
with 27 states in the resulting Markov model. With the change in intruder
capability, the single server is now down for about 97% of the mission. About
58% of its time is spent in the process

(attack, a).Attack
./

{attack}
(fail, f).Fail

that is, in hard failure under attack.

4.2 Attack on a Diversely Replicated Server

In response to the higher attack potential of the persistent intruder, we can use
redundancy based on heterogeneous servers. Our diversely replicated server uses
three distinct servers operating as a fault-tolerant or survivable state-machine
ensemble. We count the server as still supporting the mission as long as one
replica is still in the Server process. (Most agreement protocols would call for
more replicas, but the added states can exceed the capabilities of our current
modeling tool.)



Intruder0
def
= (searching, h).Attack0;

Attack0

def
= (start attack, k).(attack0, a).Intruder1 + (start attack, el).Intruder0;

Intruder1
def
= (searching, h).Attack1;

Attack1

def
= (start attack, k).(attack1, a).Intruder2 + (start attack, el).Intruder1;

Intruder2
def
= (searching, h).Attack2;

Attack2

def
= (start attack, k).(attack2, a).Attack2 + (start attack, el).Intruder0;

Figure 5: PEPA Model of Sequential Intruder for Replicated Server

We need a new stochastic process algebra model that retains the rates of the
single-server persistent intruder model, but structurally reflects the attacker’s
interaction with the server. This model is shown in Figure 5

The processes Intruder0 through Intruder2 represent stages of the attack
the intruder must make. Again the activity rates are as shown in Table 1 except
rates k = 0.999 and el = 0.001, to model persistence. The intruder alternates
between searching for a vulnerability and attacking. As a vulnerability is dis-
covered, immediately it is used to attack the applicable server. This model
assumes no common mode vulnerabilities; the intruder must find three distinct
vulnerabilities to stop the replicated server.

We model the replicated server as a set of three PEPA processes Server0
through Server2, as shown in Figure 6 The model does not reflect the normal
operation of the servers, but the sequential nature of the attack: the first server
to be compromised is Server0 and the last server to be compromised is Server2.
Intruder activities in process Server2 cannot take place before activities in the
previous server processes.

The fact that each server process is designed to cooperate on any of the
attacks is an artifact of the model that is needed to prevent deadlocks. Attacks
not intended for the particular server have no effect. For example, for Server0

the component corresponding to an attack1 is (attack1,>).Server0 which causes
the attack to fail; that is, an attack1 event has no effect the Server0 process.

Process Server1 begins activity via the process (start fail, ff).(fail, f).Server1
that is a component of process Alarm0. Then the attacker begins to search for
a vulnerability in the second server, modeled as the interaction between process
Intruder1 and process Server1. The higher numbered server processes Server1
and Server2 can revert back to process Server0 through recovery from their
respective Alarm and Triage processes. That is, unlike the single server pro-
cess model, a recovery does not recursively return to the corresponding server
process, but goes back to next lower level of failure, thus allowing a chain of
recovery back to complete restoration of all three replicas.

The intruder and the replicated server are combined using the PEPA coop-



Server0
def
= (attack0,>).T riage0 + (attack1,>).Server0 + (attack2,>).Server0;

Triage0
def
= (start triage, rt).(recover, r1).Server0 + (start triage, at).(alarm, b).Alarm0 +

(start triage, ft).Fail0;

Alarm0

def
= (start alarm, ra).(recover, r2).Server0 + (start alarm, fa).Fail0;

Fail0
def
= (start fail, rf).(recover, r3).Server0 + (start fail, ff).(fail, f).Server1;

Server1
def
= (attack0,>).Server1 + (attack1,>).T riage1 + (attack2,>).Server1;

Triage1
def
= (start triage, rt).(recover, r1).Fail0 + (start triage, at).(alarm, b).Alarm1 +

(start triage, ft).Fail1;

Alarm1

def
= (start alarm, ra).(recover, r2).Fail0 + (start alarm, fa).Fail1;

Fail1
def
= (start fail, rf).(recover, r3).Server1 + (start fail, ff).(fail, f).Server2;

Server2
def
= (attack0,>).Server2 + (attack1,>).Server2 + (attack2,>).T riage2;

Triage2
def
= (start triage, rt).(recover, r1).Fail1 + (start triage, at).(alarm, b).Alarm2 +

(start triage, ft).Fail2;

Alarm2

def
= (start alarm, ra).(recover, r2).Fail1 + (start alarm, fa).Fail2;

Fail2
def
= (start fail, rf).(recover, r3).Server2 + (start fail, ff).(fail, f).Fail2;

Figure 6: PEPA Model for Replicated Server Attacked by Sequential Intruder



eration operator ./
S

that causes its operands to synchronize on activities in the

shared interface S, as shown in Equation 3.

Intruder0
./

{attack0,attack1,attack2}
Server0 (3)

The resulting PEPA model has 157 states that reflect all of the possible com-
binations of vulnerabilities, attack progress, and defensive response possible for
our replicated server.

This model shows the benefit of the diverse replication that forces an intruder
to compromise different software on each server replica. For the same activity
rates as the single server versus a persistent attacker, this replicated server is
available for over 93% of the mission. The replicated server spends over 60% of
its time in one of the two processes

Intruder1
./

{attack0,attack1,attack2}
Server0

Intruder2
./

{attack0,attack1,attack2}
Server0

That is, while the persistent intruder is searching for a vulnerability to carry
out the next stage of its attack, the replicated servers are recovering completely
back to full operation.

Stevens, et al. characterize the preceding approach (use a vulnerability as
soon as it is discovered) as a aggressive strategy [23]. This aggressive strategy
may be stressful to the replicated server but it is not always best from the
intruder’s perspective.

What would the survivability of the same replicated server be, if the intruder
did not attack until a vulnerability was known for each diverse server replica?
That is, what if the intruder conserves vulnerabilities and uses a replicated at-
tack? This alternative strategy does not violate the diverse server assumption
of failure independence directly. However, it simulates it, and thus poses a
challenge to diverse replication as a defense. However, improved intruder effec-
tiveness is not guaranteed: since it takes longer to find multiple vulnerabilities,
a replicated diverse attack will occur less often. Will this longer search time
tend to compensate for the possibly greater effectiveness of a diverse attack?
That is, will the greater likelihood of causing failure in all replicas be offset by
the longer time it takes to discover multiple vulnerabilities?

Our fourth and final model shows that this is not the case. If we use the
same activity rates our last PEPA model shows that the flaw conservation or
replicated attack strategy can be more effective than an aggressive strategy. The
final model causes a diverse replicated attack to take longer to construct. So an
attack happens less often, but its greater effectiveness outweighs the influence
of the delay.

To match the characteristics of the intruder to the model we modify the pre-
vious intruder process to search sequentially for a vulnerability in each diverse



Intruder
def
= (searching, h).(searching, h).(searching, h).Attack;

Attack
def
= (start attack, k).(attack, a).Attack + (start attack, el).Intruder;

Figure 7: PEPA Model of Replicated Intruder

Serveri
def
= (attack,>).T riagei;

Triagei
def
= (start triage, rt).(recover, r1).Serveri + (start triage, at).(alarm, b).Alarmi +

(start triage, ft).Faili;

Alarmi
def
= (start alarm, ra).(recover, r2).Serveri + (start alarm, fa).Faili;

Faili
def
= (start fail, rf).(recover, r3).Serveri + (start fail, ff).(fail, f).Faili;

Figure 8: PEPA Model of Server for Replicated Intruder

replica, before launching any attack. This intruder model is shown as Figure 7
The model of the replicated server must now be structured to permit diverse
replicated attacks. By using the PEPA cooperation operator on a empty co-
operation set we can establish completely concurrent operation of each server
replica. This allows us to model a concurrent attack on all three replicas.

Our replicated server now looks like three processes Serveri, i = {0, 1, 2} as
shown in Figure 8.

Notice that now each server can recover independently. Otherwise, the in-
truder could attack concurrently but the servers could only recover sequentially,
giving an unrealistic advantage to the intruder.

The replicated server and intruder are combined as shown by Equation 4

Intruder
./

{attack}
(Server0 ./ (Server1 ./ Server2)) (4)

The replicated attack versus replicated server model has 3,645 states. It
spends about 31% of its time as either the process shown as Equation 5 below,
or the two similar ones that have recovery taking place in Server1 or Server2
instead of Server0

(attack, a).Attack
./

{attack}
(recover, r3).Server0 ./

(fail, f).Fail1 ./ (fail, f).Fail2 (5)



The model also spends about 16% of its time as the process

(attack, a).Attack
./

{attack}
(fail, f).Fail0 ./

(fail, f).Fail1 ./ (fail, f).Fail2 (6)

In total, the model spends roughly 80% of its time in a process that has no
Serveri process active. That is, each of the three servers is either failed, recov-
ering, or in an alarm state. This result is more surprising than it first appears.
The intruder clearly will do better with replicated attacks since the servers can-
not use the intruder’s search time to perform any triage. However, replicated
attacks require more time to discover; in this model exactly three times longer.
Our model would indicate that it can be worth the wait to build a more diverse
attack.

4.3 Presentation of Results

We prefer to present our results in terms of the mean time to discovery of a
vulnerability [23], represented by the rate constant h in our PEPA models, as
shown in Figure 9 below. The constant h gives the rate of vulnerability discov-
ery. The value of h in these models approximates the success of vulnerability
prevention efforts applied to the servers during development and installation.
That is, smaller values of h can be interpreted to indicate increased hardening
or intrusion resistance of the server. This is very useful for trade-off studies be-
tween component hardening and architectural choices. That is, the models help
us compare the merits and demerits of hardening certain components rather
than replicating them or placing them behind protective boundary controllers.

The quantitative results presented in this fashion show how the more so-
phisticated intruder impacts the diverse replication. If we assume an intruder
with an aggressive flaw exploitation strategy then the replicated server shows a
dramatic increase in survivability. On the other hand, if we assume an intruder
who conserves flaws before attacking, the improvement is still significant, but
not necessarily adequate for high-consequence systems. Finally, we see that
hardening can bring the single server up to approximately the level of a repli-
cated server. At this time, there is no repeatable approach to hardening software
to the required flaw density[1].

5 Conclusions

Human-sponsored faults are subject to the full range of human innovation. An
abstraction that simplifies this to a small collection of statistics about fault
effects or time to breach hides this innovation and tells little about the actual
intrusion-tolerance or survivability of a system. Intruders are best characterized
by directly defining their attack potential.
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Figure 9: Server Survivability Against Different Intruders

Quantitative modeling of survivability for validation or measurement of high-
consequence systems should be based on detailed intruder models. Survivability
validation results cannot be applied without a well-defined and precise notion
of the intruder’s attack potential.

Detailed aspects of the intruder’s attack potential can have significant im-
pact on the expected survivability of an approach. Attack potential should be
defined in terms of intruder capabilities, initial access, and initial knowledge.
Quantitative models should make these non-quantitative or behavioral assump-
tions clear as part of their results. A contingency analysis based on variation of
attack potential should be the basis for presentation of results.

Merely clarifying assumptions about intruder behavior is not sufficient for
high-consequence systems. Weaker assumptions are to be preferred. That is,
the quantification of survivability or security should be based on hard intruders.
Intrusion-tolerance mechanisms such as diverse replication are expensive and
not likely to be used for low-consequence applications. For this reason it is
imperative to understand survivability with respect to hard intruders rather
than a range of probable intruders.

Determining a suitable hard intruder is not trivial. As our last two models
demonstrated, an apparently hard intruder may not be as hard as it looks. A
simple change in capability or initial knowledge can significantly increase an
intruder’s attack potential.

We have also shown, incidentally, that stochastic process algebra can be
useful for attack-potential-based quantitative modeling of survivability. As Do-
natelli et al. report [5] stochastic process algebra is a less mature technology



than generalized stochastic Petri nets (GSPN) but offers a more explicit com-
positional structure. This clarity of composition facilitates the construction of
a collection of quantitative models that reflect structural differences in intruder
attack-potential.
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Editions, Toulouse, 1995.

[14] B. Littlewood, S. Brocklehurst, N. Fenton, P. Mellor, S. Page, D. Wright,
J. Dobson, J. McDermid, and D. Gollmann. Towards operational measures
of computer security. Journal of Computer Security, 2((2-3)), 1993.

[15] R. Ortalo, Y. Deswarte, and M. Kaâniche. Experimenting with quantitative
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